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Abstract—Technological advances enable new kinds of smart
environments exhibiting complex behaviors; smart cities are a
notable example. Smart functionalities heavily depend on space
and need to be aware of entities typically found in the spatial
domain, e.g. roads, intersections or buildings in a smart city. We
advocate a model-based development, where the model of phys-
ical space, coming from the architecture and civil engineering
disciplines, is transformed into an analyzable model upon which
smart functionalities can be embedded. Such models can then be
formally analyzed to assess a composite system design. We focus
on how a model of physical space specified in the CityGML
standard language can be transformed into a model amenable
to analysis and how the two models can be automatically kept
in sync after possible changes. This approach is essential to
guarantee safe model-driven development of composite systems
inhabiting physical spaces. We showcase transformations of real
CityGML models in the context of scenarios concerning both
design time and runtime analysis of space-dependent systems.

Index Terms—Bidirectional Model Transformations, Model-
driven Engineering, CityGML, Cyber-physical spaces

I. INTRODUCTION

Contemporary buildings and urban areas often are complex
spatial environments, hosting computational elements as well
as humans and provide different kinds of functionalities,
typically to enable various forms of interaction. As societies
evolve and complexity grows, engineering complex cyber-
physical systems inhabiting spatial environments presents new
challenges, in typical scenarios dominated by information from
multiple domains and the need for assurances regarding the
overall system’s behavior.

The development of such space-dependent, cyber-physical
systems demands for software engineering support facilities
that span their lifecycle, from design to operation. Engineering
can be enabled with model representations of their spatial
environment [1]; such representations can be sourced from
domain models originating in other disciplines and dominated
by their practices, tools and domain knowledge. Design tools
and approaches, as used in civil engineering and architectural
informatics, frequently produce artifacts which are geometrical
or geographical representations describing physical spaces,
such as buildings or cities. Although relying on international
standards and accessible in machine-readable formats, such
physical space descriptions [2], [3] are still often intended
for static documentation or domain-specific purposes. The
resulting models are therefore of non-easily analyzable types,

which hinders their consideration for engineering software-
intensive, composite cyber-physical systems [4]. The domain
models we consider conform to the CityGML [5] standard
which also encompasses buildings (Building Information Mod-
els – BIM [6]), widely used in practice for descriptions of
buildings and cities, for which numerous real-world models
are becoming available [7].

Our work grounds on model-driven principles and aims at
the development of integrated and open tool environments for
systematic model-based engineering of space-intensive sys-
tems, on top of traditional spatial descriptive models currently
used in practice. Our approach entails automatic synchroniza-
tions between spatial domain models and generic, graph-based
analyzable models. The idea is to use exactly the same spatial
domain models used by practitioners to represent urban areas,
buildings and city spaces and project from them some abstract
and more computationally convenient representation, which
can be transformed back to the original one when needed. The
analyzable models we target are formally modeled topological
structures –cyber-physical spaces [4]– enjoying well-defined
semantics, where formal reasoning can be performed. Cyber-
physical spaces are composite models integrating human
agents, computational and physical aspects of systems useful
for analysis. Our proposed formal programming technique and
technical framework assure that relevant information added,
or changes applied to the domain (resp. analyzable) model
are reflected back in the analyzable (resp. source domain)
model automatically and coherently. The technique developed
is rooted in the theory of bidirectional transformations, which
guarantees that synchronization between models is consistent
and well-behaved.

Our key contribution is a technical framework based on
bidirectional model transformations to support engineering of
space-dependent systems. The novel bidirectional reflection
facilities we provide for domain and analyzable models can
be readily used to (i) derive models from spatial models
occurring in practice, since CityGML models of cities are
widely available, and (ii) instrument modeling and analysis
facilities for spatially-dependent cyber-physical systems. Thus,
they have a high potential for adoption by the community.
We further point out that application of bidirectional model
transformations to physical space models describing cities has
not been investigated before by the community. To provide



concrete evidence of the proposed model-based approach, we
demonstrate that bidirectional transformations can be achieved
in practice on real city models. The concrete realization of the
proposed framework as a prototype is freely available as open
source software.

The rest of the paper is structured as follows. Section II
gives an overview of the proposed approach, while Section III
provides necessary background, design goals and challenges.
Section IV describes the design of a bidirectional transforma-
tion between city models and analyzable models. Section V
presents tool support, while Section VI provides an assessment
of the proposed approach over two case studies, targeting
design and operation. Lastly, Section VII gives an insight of
related work in the field, and Section VIII concludes the paper.

II. MODEL-BASED ENGINEERING OF CITY SPACES

Engineering systems inhabiting physical spaces requires
providing facilities that span their lifecycle, from design to
validation of their requirements. Model-based engineering
plays a crucial role, as representations of systems not only
enable design but also analysis and runtime reasoning. This
is evident in contemporary smart building or smart city ap-
plications, where the use of domain-specific models has long
been recognized as beneficial. Representations of the physical
space (such as CityGML, BIM, or GIS), originate in the
respective source domain, typically from other engineering
disciplines. Such representations may enable validation of the
overall system’s requirements. However, from an engineering
perspective, such validation analysis cannot be performed upon
domain representations; analyzable models, typically some
graph-based abstractions, must be obtained from the source
model and brought to the semantic domain. Keeping such
domain models in sync with derived analyzable models is then
crucial. Our approach is illustrated in Figure 1.
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Figure 1: Bidirectional Model Transformations of City Spaces.

For a system at the design phase, the development cycle is
naturally based on source domain models, usually encompass-
ing GIS or BIM, depending on the design goals. CityGML
provides a unified standard for all of them – think of an
architect or urban planner altering the design of a city domain

model such as changing road transportation routes. This occurs
within the source domain and is dominated by the practices,
the tools and the domain knowledge of the particular discipline
(e.g., the transportation expert), such as civil engineering or
urban planning. The overall system inhabiting the physical
space specified by the CityGML description however, may
need to satisfy certain quality attributes demanding particular
kinds of reasoning. For example, the transportation expert
may change the design in order to facilitate an emergency
evacuation scenario. Such an activity is part of the composite
system’s development cycle.

Validation of a design against requirements entails an anal-
ysis activity. This analysis may be tailored to specific types of
quality attributes and can be performed on some representation
of the domain model, which is analyzable and thus situated in
a semantic domain. For a transportation expert for example,
analysis may entail e.g., simulating rescue teams within an
evacuation scenario, by placing them in the analyzable model
and reasoning on their behavior. Note that multiple semantic
domains may be derived depending on different analyses that
are sought. If the design changes, the analysis activity should
be triggered again, to ensure requirements satisfaction on
the changed design – this is often the case in exploratory
processes. Moreover, if requirements are not satisfied, analysis
processes may suggest or incur changes to the analyzable
model in order to achieve a satisfactory design. The transporta-
tion expert for instance, may seek to visualize effects of rescue
teams upon the city domain model, or investigate effects of
the evacuation scenario bahavior upon other aspects captured
in the domain model. Thus, the main contribution realized
in this paper consists of synchronization facilities that ensure
both that changes on the physical domain model (in our case a
CityGML description) – are reflected in the analyzable model
(a graph-based representation), as well as changes performed
to the latter are reflected back to the former.

However, given the informational asymmetry between the
two different types of models, properly synchronizing them is
normally not a trivial task. When performing some operations
to synchronize two models, the transformation is deemed
correct if they are consistent (i.e. some equivalence relation
is defined between the information contained in them) [8].
When the consistency relation has been defined, bidirectional
transformations become a powerful tool to make sure the
synchronization between the models is consistent and well-
behaved. We note that bidirectional transformations have been
of limited use in practical applications until now; we believe
the present work can aid in better understanding some of the
benefits and challenges engineers face in order to achieve
a correct and meaningful reflection of changes between a
domain-specific model and a more abstract one, within our
particular domain.

III. PHYSICAL SPACES AND THEIR REPRESENTATIONS

Engineering space-intensive cyber-physical systems can be
enabled with model representations of their spatial environ-
ment. Spatial environment descriptions are typically found in



other engineering disciplines such as civil engineering, archi-
tectural informatics or architecture. We consider such spatial
environment descriptions as source, domain models. Specif-
ically, we adopt the ones used by practitioners to represent
city-wide spaces (i.e. CityGML), since they also encompass
buildings (i.e. Building Information Models, BIM [6]). How-
ever, CityGML descriptions are of non-easily analyzable types
for the purpose of engineering software-intensive composite
cyber-physical systems. To this end, we first briefly describe
our source models, before succinctly defining the composite
cyber-physical models we target. Those models are analyzable,
enjoy well defined semantics, and can be used for software
engineering purposes.

A. CityGML Descriptions as Source Models

CityGML as virtual 3D city models, have been widely
adopted to analyze and take actions in a growing number of
scenarios including urban planning, emergency management,
traffic noise simulation, navigation systems, urban solar poten-
tial estimation, or visual communication [9], [10]. CityGML
is playing a major role, given its ability to combine both
thematical and spatial representations, in progressive levels of
details [2], [5].

<<Feature>> 
_CityObject

+ creationDate: xs::date [0..1] 
+ terminationDate : xs::date [0..1]
+ relativeToTerrain : RelativeToTerrainType [0..1]
+ relativeToWater : RelativeToWaterType [0..1]

<<Feature>> 
CityModel

<<Feature>> 
gml::_FeatureCollection

<<Feature>> 
gml::_Feature

<<Feature>> 
luse::LandUse

<<Feature>> 
dem::ReliefFeature

<<Feature>> 
veg::_VegetationObject 

<<Feature>> 
frn::CityFurniture 

<<Feature>> 
wtr::_WaterObject 

<<Feature>> 
gen::GenericCityObject 

<<Feature>> 
_Site

<<Feature>> 
tran::_TransportationObject

<<Feature>> 
grp::CityObjectGroup 

<<Feature>> 
bldg::_AbstractBuilding

<<Feature>> 
tun::_AbstractTunnel

<<Feature>> 
brdg::_AbstractBridge 

cityObjectMember
*

*

generalizesTo

*

*

Figure 2: CityGML 2.0 top level class hierarchy addressed by
our framework.

An interesting aspect of CityGML is the flexibility it in-
troduces, by providing a way of defining Application Domain
Extensions (ADEs), in which application requirements related
to the city models can be described, while the enriched model
still complies to the specification [11]. ADEs are formally
defined extensions, specified in XML Schema Definition or

Unified Modeling Language, capable both of adding new prop-
erties to existing CityGML classes and of adding entirely new
classes and data types. For example, an ADE can be a set of
extra attributes and elements nested into a standard CityGML
model, to extend the capability of CityGML buildings in order
to fully support Building Information Modeling descriptors.
This also includes adding extra elements within the ADE,
which reference standard CityGML objects and describe new
relationships among them. These extensions can be arbitrary,
ranging from geometrical aspects like shadow orientation to
process-specific, like historical priority. More than 40 ADEs
have been developed so far, with purposes including noise
propagation, energy distribution, spatial topology and time
variation among the others [11].

Despite being valuable sources of information, CityGML
models’ volume and domain-oriented design, make it chal-
lenging to actually consider them as a data source for complex
analysis and operation, requiring huge application-specific
preprocessing and postprocessing.

Our technical framework has been designed under the
idea of automatically migrating both changes to the stan-
dard CityGML thematic features, shown in Figure 2, and a
given ADE. To the best of our knowledge, despite the many
CityGML ADEs available neither tools nor data are readily
accessible for any of them as of today and, therefore, a
preprocessing step is still needed in order to prepare the source
information describing application-specific relationships, by
referencing objects of the original city model. In the next sec-
tion, to simplify the discussion, we will assume the key() and
children() functions are properly defined with the purposes
of providing a unique identifier of the CityGML feature and
retrieving a list of sub-features respectively.

B. Cyber-Physical Spaces as Target Models

The analyzable models that we target are formally modeled
topological structures specifically aimed at cyber-physical sys-
tems, termed cyber-physical spaces (CPSp) [1], [4] whereupon
formal reasoning can be performed. We opted for this generic
graph-based target model because of (i) its flexibility and
applicability to various types of analyses and (ii) its formal
semantics, allowing for a precise definition of the correctness
of a transformation. Cyber-physical spaces are essentially
graph-based representations of topological relations inherent
in a space, which may span physical or computational barriers.
This allows increased expressive power to represent complex
systems and their interaction with active agents which may in-
clude devices, humans, software components or infrastructure.

Their formal semantics have been given in terms of bi-
graphs [12], a process meta-calculus consisting of two super-
imposed graphs. Such dynamic semantics are quite similar to
graph transformation systems. For complete definitions and
proofs of formal semantics, which are not covered in this
paper, the interested reader can refer to the vast body of
literature on the topic [12]. Scoped to our framework, bigraphs
can be described in terms of the following components:



� A set of labelled nodes v 2 V which represent the el-
ementary objects of the environment. In the follow-
ing we will consider them as labelled with a pair
(identifier; type) , and we assume that a key(v) func-
tion returning the label is properly defined. In additon, we
suppose that findNode(k; S) is a function that returns a
node v from the set S labelled with k.

� A place graph is a forest, i.e. a set of rooted trees
defined over nodes; this graph captures the notion of
containment -nesting- of nodes. Given the structure of
CityGML models, we can slightly simplify the discus-
sion, considering that the containment relation develops
from a single root representing the CityModel and, thus,
the forest degenerates to a tree. In this perspective, we
refer to child(n) for a node that has n as a parent in the
containment relationship.

� A link graph is a hypergraph defined over the same set
of nodes. Hyper-edges link any number of nodes; this
graph represents generic links (i.e. many-to-many rela-
tionships) among nodes. Subsequently, we suppose that a
proper function, similar in principle to findNode(k; S),
is available to find the links connecting a given node.
Place and link graphs are orthogonal, and edges between
nodes can cross locality boundaries.

Bigraphs allow us to achieve both the level of expressiveness
needed by key topological characteristics and a high level
of flexibility: the place graph defines a hierarchical structure,
allowing us to model the locality in space of the city objects in
terms of topological nesting, while the link graph can represent
arbitrary connections among nodes (i.e. some other topological
relation), enabling the representation of application-specific
relations.

C. Synchronization: Design Goals and Challenges

In our view, model-based engineering of cyber-physical
space-dependent systems should convey the following design
principles, which underly our design of a bidirectional trans-
formation between the two models:

1) Interoperability with well-established domain-specific
standards and data models, namely CityGML and BIM
as used in practice;

2) Provision of an actionable representation of the model in
a non-domain-specific language that can enable complex
analysis, in our case cyber-physical space reasoning;

3) Automatic composition of changed and unchanged parts
of the model in a suitable way (i.e. well-behaved trans-
formations), highly pertinent to both support of design
activities as well as runtime model operations;

4) Decoupling of independent levels of reasoning (e.g.
topological from geometrical) whenever possible, since
those can be considered as being on different levels of
abstraction.

Whichever the goals, it must be noted that the biggest
challenge in synchronizing a highly detailed CityGML model
(originating from domain-specific tools and practices) and

an analyzable model (crafted for representing high-level
application-specific features in terms of topological relations),
relies in keeping the consistency between the two asymmetric
sources of information in both the ”forward” direction (i.e.
the abstraction process) and the ”backward” – or ”putback” –
one (i.e. the reification process). It is particularly the putback
direction that needs special attention, since it requires new
information to be generated, in order to fill missing details
and produce a meaningful and consistent result in terms of
practitioners’ knowledge.

In the following, we illustrate how the above challenges
may be tackled by designing and implementing a consistent
and well-behaved bidirectional transformation (BX) between
source city models and analyzable models which, by design,
properly propagates changes when either one of the models is
modified.

IV. BIDIRECTIONAL TRANSFORMATIONS DEFINITION

At the core of any bidirectional model transformation, re-
gardless of the direction, is the need of carefully defining when
the information related to an object of the source and the one
related to an object of the target are equivalent. This equiva-
lence relation is usually referred in the literature as consistency
between the two (or more) sources of information [13]. In
the following, we first succinctly describe the laws underlying
our transformation and the formalization of the consistency
relation between source city models and cyber-physical spaces,
then we sketch the algorithms implemented for consistency
enforcement in our framework and lastly discuss some issues
and limitations of the putback strategy in our approach.

A. Consistency Specification

Bidirectional transformations (BX) is a development
methodology for maintaining the consistency relation between
models, which can be expressed in terms of lenses [13]. A lens
consists of a pair of transformations get and put [14]. The
forward transformation get(s) is used to produce a target view
v from a source s, while the putback transformation put(s; v)
is used to reflect updates on the view v to the source s. We
talk about asymmetric lenses when the transformations take
place between two models where one side, which is called the
source, has more information than the other, which is called
the view. A pair of get and put should be well-behaved, in
the sense that it satisfies the following round-tripping laws:

put(s; get(s)) = s GETPUT
get(put(s; v)) = v PUTGET

The GETPUT property requires that no change of the view
shall be reflected to no change of the source, while the
PUTGET property requires all changes in the view should be
completely reflected to the source so that the changed view can
be computed again by applying the forward transformation to
the updated source.

Concerning the models we investigate, the consistency re-
lation can be formally specified in the following way; 8s; s0

elements of the CityGML model, 8r relationship defined in



the CityGML ADE and 8v; v0 nodes of the bigraph, we can
say that s and v having the same keys (key(s) = key(v)) are
synchronized (s 
 v) if and only if, the following conditions
hold:
A.1 instanceOf (s; CityObject) ^ instanceOf (v ; Node)
A.2 isContained(v; pv) ! childOf (s; ps) ^ ps 
 pv
A.3 isLinked(v; v0) ! holds(r ; s; s 0) ^ s 0 
 v 0

The predicate istanceOf guarantees an object is of the
specified type, childOf expresses the parent-child relationship
of CityGML elements, while isContained and isLinked rep-
resent respectively containment and links of the bigraph. holds
describes both the presence of a relationship in the ADE and
that its application-related meaning, somehow, holds.

We may say that a source model is place-consistent with
respect to a view model if both A.1 and A.2 are satisfied.
Likewise, we may say that it is link-consistent (w.r.t. a view
model) if A.1 and A.3 are satisfied. When a source model
is place-consistent and link-consistent at the same time, then
it is consistent (i.e., the models are synchronized). Place-
consistency has been fully formalized and therefore it can
always be checked without ambiguity. This means that in no
case we can have e.g., a road inside a building or similar
irregular cases which are not allowed by the CityGML specifi-
cation. On the other hand, link-consistency cannot be in prin-
ciple solved unambiguously, since it is application-specific.
This not-completely formalized approach is not new in BX,
since, in some cases, local correctness checks (sometimes also
called black-box operations) are needed in order to achieve
consistency [15].

B. Consistency Enforcement

The three conditions described are enforced by our frame-
work in the same order as presented. Algorithms 1 and 2
show the functions used for the putback transformation, which
take a CityGML object and a node of the CPSp as input
and return an updated version of the original entity within
the CityGML description – the interested reader can refer to
the accompanying artifact for complete implementations and
further technical details. The corresponding functions for the
forward transformation are automatically generated.

Our implementation has been developed in the BiGUL
language, a putback-based bidirectional transformations lan-
guage [16]. The strength of BiGUL, in comparison to other BX
approaches, relies on the fact that only the putback direction
has to be explicitly developed, as the forward direction is
automatically derived by the language. This results in more
flexibility for the modular design adopted, as, to support new
application domains, it suffices to just change the Application
Policy, a specific component to which Section IV-C is devoted.

Algorithm 1 exhibits the first stage of the synchronization
logic, which, starting from the root of the city model and from
the outermost node of the bigraph, traverses the two structures
and repairs the differences by adding or removing the needed
nodes at the correct position of the city model. Thus, at the
end of its execution, the source model will be place-consistent
(i.e., conditions A.1 and A.2 must hold).

Algorithm 1 Containment Graph Syncing

function syncCont(s :: CityObject; v :: Node)
for all o 2 children(s) do

if key(o) =2 children(v) then
REMOVE(s; o)

else
syncCont(o; findNode(key(o); children(v))

end if
end for
for all n 2 children(v) do

if key(n) =2 children(s) then
ADD(s; n)

end if
end for
return s

end function

Algorithm 2 Link Graph Syncing

function syncLinks(s :: CityObject; v :: Node)
rs := getRelsWith(s)
ls := getLinksWith(v)
for all l 2 ls do

if key(l) 2 rs then
rel := findRel(key(l); ls)
for all n 2 nodes(l) do

if key(n) =2 rel then
UPDATE(n; ls)
break

end if
end for

else
UPDATE(n; ls)

end if
end for
loop on ade relationships()
repeat syncLink() on children
return s

end function

Conversely, Algorithm 2 describes the second stage of the
synchronization. It also starts from the root of the two models,
but it makes the assumption that the model is place-consistent,
and therefore has the only goal of repairing relationships
between the objects. It loops on the bigraph links and checks
if the corresponding relation exists. If this is the case, a
further check has to be done to verify that the relationship
and the link reference the same elements. When these checks
fail, a repairing procedure updates the source element. The
same logic is mapped to the children nodes (the same in both
models), until the source model is link-consistent (i.e., A.3
holds).

Lastly, in both Algorithms 1 and 2, procedures in uppercase
represent Application Policy actions, which play an important
role in the transformation and are hence analyzed in the next



section. Illustrated functions highlight the main aspects of
the effective transformations. For more details, the interested
reader can refer to Section V and the accompanying artifact.

C. Dealing with Domain-Speci�cs

The algorithms previously introduced have been designed
with the goal of satisfying the consistency conditions.
However, conditionA.3 is not completely formalized, as
application-speci�c requirements are, in general, unknown.
This is because in principle, the rei�cation strategy for new
or removed objects may greatly vary depending both on the
purpose of the speci�c object and on application scope and
requirements.

Application Policy is the component appointed for ulti-
mately verifying that task. Since different applications are
likely to require different policies, application policy is an
external component, interacting with our framework through
clearly scoped interfaces calledactions. Actions can access a
limited set of information in order to achieve their goal, and
they are required to produce an output that does not break
previous assumptions.

The following actions have been de�ned:
� ADD(s :: CityObject ; v :: Node) :: CityObject ,

which is bound to generate missing objects of the source.
To that extent, it has access to all the information avail-
able from the parent of the target object. It is also allowed
to change its actual representation (this is needed in some
applications such as keeping spatio-semantic coherence)
and it must return a new child having the key and type
provided by the respective bigraph node.

� REMOVE(s :: CityObject ; v :: Node) :: CityObject ,
which symmetrically toADDhas the purpose of removing
extra objects from the source. It has access to the same
information with the same constraints, albeit in this case
it only returns the updated representation of the parent.

� UPDATE(s :: CityObject ; v :: Node) :: CityObject
is the most general action, responsible for both updating
ADE relationships and potentially changing the represen-
tation of the current object. The problem of correctly
re�ecting a set of links may be very hard to solve
in general. For this reason, our framework makes two
simplifying hypotheses. Firstly, we assume that a change
in a relationship (or the de�nition of a new one) can
be fully expressed in terms of separated updates to the
objects corresponding to the different nodes of a link.
Moreover, we assume that the information required to
address this task is limited to the subgraph of nodes and
links related to the current one.

To understand the generality and thus the complexity inher-
ent in UPDATE, consider a scenario in which we have two
touching buildings, A and B in our cyber-physical space.
A reasonable change could be, for example, to remove the
touchingrelation between them and add a new one between B
and C. Such an edit could be re�ected in the original model
in many different ways: a feasible result could be to just
change the position of those objects. Nevertheless, another

option could be to change the position of all the objects in the
city, in order to satisfy the new requirement. Our framework
can currently only deal with cases of the former, since the
latter changes the model so signi�cantly that it results in
a completely different one, potentially triggering an endless
loop of breaking-repairing operations in other areas of the
model. The extent to which both these interfaces and their
underlying assumptions are limiting is still a matter of active
investigation.

V. TOPOCITY BX FRAMEWORK

In the previous section we presented the laws and the
de�ned consistency relation, together with algorithms for
guaranteeing them, as long as some domain-speci�c aspects
and assumptions are met. To provide concrete support for
our model transformation framework, we realized TOPOCITY,
a prototypical tool implemented in Haskell, which is freely
available for use1. TOPOCITY's main components are shown
in Figure 3; its modular design allows for external component
development and integration.

Figure 3: Combined view of architecture and data�ow of
TOPOCITY. Dotted boxes represent external components.

The functionality of TOPOCITY revolves around two mod-
els, a source CityGML description, and a view, which is
the CPSp model. TheHXT component has been adopted for
standard I/O operations like loading, parsing and storing the
XML-based CityGML �les. Auxiliary data-binding operations
are supplied by thecitygml4hscomponent implemented on
top of HXT, providing a typed interface among data manipula-
tions, which gives the capability to rely on type checking. The
Abstraction & Rei�cation interfaceis the software component
delegated to deliver a common representation of citygml4hs
types, so that more generalized BX could be de�ned on top of
them. ThePlace-Graph BXand Link-Graph BXcomponents
make use of BiGUL primitives to implement Algorithms 1

1 TOPOCITY– https://topo.city



and 2 respectively, while theApplication Policyrefers to the
actions presented in Section IV-C.

To use TOPOCITY in practice, one follows four progressive
steps:

1) Loading the source model (which is the pair of a
CityGML and CityGML ADE description) by calling e.g.,
load (city :gml; ade:gml).

2) Generating a CPSp target model (i.e. perform theget
transformation) by simply callingget (source ).

3) Generating an updated source model (i.e. perform the
putback transformation) by callingput (source ; view).

4) Storing the new source model in a �le by calling
store (filename :gml).

In addition, we make available concrete analyzable models
derived by TOPOCITY from real city models, obtained from
publicly accessible repositories2.

VI. EVALUATION : USE CASES

Our contribution consists of a technical framework im-
plemented with formal programming techniques to support
model-based engineering of space-dependent systems. To pro-
vide concrete tooling for our framework, TOPOCITY is based
on BiGUL [16] and supports CityGML descriptions. The target
models are graph-based and enjoy formal semantics [17].
Synchronizations between CityGML source models and tar-
get models are well-behaved and consistent as described in
Section IV. Thereupon, we evaluate our approach over two
exemplar cases where such bidirectional transformations can
be used for engineering city space-intensive systems:

� During system development, analysis may be sought as
part of an exploratory design cycle. In such a case,
supporting validation is crucial. To this end, we demon-
strate how an analyzable model can be automatically
derived. TOPOCITY's synchronization facilities ensure
that any changes on the CityGML spatial domain model
are re�ected to the analyzable model. To illustrate our
approach, we showcase transformations upon a exemplar
problem used in the civil engineering domain and sci-
enti�c literature which concerns construction site layout
planning: a tower crane positioning problem.

� During system operation, keeping an analyzable model
alive can be instrumental in capturing contextual informa-
tion received through monitoring. Analysis performed on
this model can provide insights or serve as input to plan-
ning processes. Changes must be be re�ected back to the
source spatial model, to be visualized or combined with
other domain-speci�c models that are interoperable with
CityGML. TOPOCITYensures that the updated analyzable
model is consistent with the source CityGML model, by
accordingly re�ecting changes back. To illustrate such
activities, we consider emergency response in a city.

The cases we consider for our evaluation purposes are model
problems: they are representative cases where bidirectional
transformation can play a big role in engineering an overall

2Topological city models repository – https://topo.city.

space-intensive system. We stress that the transformations in-
herent in the model problems presented are performed on real
CityGML models obtained from public repositories, namely
a district of Remscheid, North Rhine-Westphalia, Germany
and Flat Iron Street in New York, USA. We conclude with
a discussion.

A. Facilitating System Design: Tower Crane Positioning

Proper optimization of construction sites layout is key to
ef�cient construction activities. Before construction starts, site
layout planning provides the necessary equipment and tempo-
rary facilities for the construction process, including allocation
and dimensioning of elements like tower cranes, containers or
storage areas. Decisions taken during this planning phase have
direct impact on cost development and occupational safety
on site during construction. Positioning of tower cranes is an
important exemplar [18], [19]. Recent literature has provided
techniques to automate the solution of this task, where two
critical issues have been identi�ed: (i) the lack of a simple
but formal language capable of expressing rules, standards
and best practices to check a building model [20], and (ii)
the absence of tools able to perform this kind of operations
by exploiting BIM/GIS descriptions like CityGML models, so
that meaningful solutions can be found before implementation
takes place [19]. In the following, we demonstrate how a
�exible solution can be designed in which our framework plays
a central role.

We consider an hypothetical construction site to be placed in
a district of the city of Remscheid, North Rhine-Westphalia,
Germany. For the real CityGML models we rely on North
Rhine-Westphalia open data [21] – the linking structure related
to tower crane positioning, is designed ad-hoc, since this step
could be easily generalized and reproduced by modern user-
guided CAD software [22]. Figure 4 shows the most relevant
part of the model generated by our framework; an extra object
and extra links are shown, corresponding to the changes made
to the cyber-physical space in order to elicit the topological
requirements for the new tower crane. Advanced analysis
and model processing to generate such changes can take
into account topological information in the analyzable model,
such as proximity of construction site elements or complex
relationships in the space layout, positioning the crane in
a manner that satis�es some occupational safety or optimal
placement requirements. As we are concerned with model
transformations only, we consider such reasoning facilities as
out of scope for this paper.

Once the target model is updated re�ecting some reasoning
(e.g., identifying the optimal position of the crane), changes
have to be re�ected back to the original model. To this
end, TOPOCITY takes care of identifying changed objects
and prompts the Application Policy to provide the 3D shape
of the tower crane and spatial coordinates. For our case
study, this was a �xed position, but a policy can specify
arbitrary alternatives, from random to user-de�ned positioning,
depending on the kind of links de�ned. Once those are given,
TOPOCITY identi�es the place in the original source hierarchy



Figure 4: Fragment of the view model derived from the
CityGML description of a district in Remscheid. Nodes are ID-
Type pairs as they appear in the real CityGML model. Presence
of other, not shown, elements of the model is indicated by* .

to arrange the new objects and rei�es the model back again
to the CityGML description.

Figure 5 shows a fragment of the original model and the
�nal result as visualized CityGML descriptions. Note how
certain reachability links between edges of three buildings are
additionally de�ned, supposing these are buildings of interest
for the construction site (Figure 4).

B. Facilitating System Operation: Emergency Response

Technology adoption for fast emergency response in urban
environments is gaining increasing attention: technological
advances may in fact provide new human-computer interaction
capabilities, allowing for effective real-time response. Con-
sider the classical setting [23] where a disaster scenario is
replicated in the Flatiron Building area of New York [24],
with several relief entities (e.g. rescue teams, ambulances or
Unmanned aerial vehicles – UAVs) dispatched throughout the
area to locate and rescue victims [4], [25].

The agents have initial knowledge of the environment, given
by the original model of the city. However, in such a scenario,
we expect the model to be updated regularly, as soon as
new information is acquired by monitoring processes. Agents
must dynamically adjust search operations and rescue prior-
ities through some criteria such as the likelihood of �nding
victims in an area or current disaster propagation. In order
to perform such tasks, which largely amount toplanningand
surveillance[26], an actionable representation of the city can
be a hypergraph in which nodes represent city objects, while
links represent safe connections between multiple nodes. This

(a) Area without a tower crane (before).

(b) The crane is placed automatically via aput to the source model (after),
re�ecting its addition on the view model.

Figure 5: Placement of a crane entity on the derived, ana-
lyzable model (Fig. 4) entails its automatic re�ection on the
source city model (Fig. 5a), resulting in Fig. 5c.

typically occurs within a Monitor-Analyze-Plan-Execute loop,
as this is an instance of a self-adaptive system. Agents monitor
the area and update the model with the information they
collect about safety of streets and buildings, while others escort
civilians from the disaster area to hospitals. Path planning
takes place based on analyzed monitored information upon
the model, with the purpose of e.g., maximizing the number
of victims rescued. Both the planning and monitoring facilities
are not relevant for the synchronization of the models and they
are therefore out of the scope of our research.

In our approach, we de�ne and extract a CityGML ADE
from the city model and populate it with real-time information,
with the goal of making thesafe distancerelation between city
objects explicit. TOPOCITY provides the hypergraph exploited
by the agents, which is updated at runtime as the monitoring
process generates new information. Figure 6 shows the aerial
view of the Flat Iron Street area of New York as described by
the CityGML model (6a), and the corresponding analyzable
view (6b). A viable safe path for the city area is shown, both
in the original model and in the analyzable one.

C. Discussion

We have demonstrated that, by using our framework, bidi-
rectional model transformations upon real spatial descriptions
can be performed, keeping analyzable models and CityGML
descriptions synchronized. The two exemplar cases presented
are different, as (i) they target different models and different
levels of details within CityGML and (ii) they showcase uses



(a) The area nearby Flat Iron Street considered for our analysis.

(b) Fragment of the corresponding view generated.

Figure 6: Runtime safe path analysis models. The source (a)
is transformed into the analyzable model (b). The highlighted
area in (a) represents the safe path illustrated in (b). Nodes are
ID-Type pairs as they appear in the available CityGML model
of New York; the presence of other elements in parts of the
model (not shown) is indicated by* .

of the framework for both systems design and operation.
Hence, we believe they show the potential of our approach.

From our experience within model transformations of
CityGML descriptions and considering the perspective of prac-
titioners aiming to use our model-based engineering approach,
interfaces and tooling integration might signi�cantly support
the design cycle. Moreover, we defer a performance evaluation
of the transformations developed for future work, as our proof-
of-concept tooling is in prototypical state.

A signi�cant �exibility constraint has been brie�y pre-
sented in Section IV-C. As anticipated there, links can be

a very powerful medium for expressing arbitrarily complex
con�gurations: in some convoluted scenarios, a putback to the
original model may not be feasible or even worse, it may
result in changes affecting a vast number of features, essen-
tially resulting in a different model. We believe our solution
addresses a relatively general set of meaningful applications,
but further research on application scenarios may result in
more precise understanding of practical limitations. Moreover,
a considerable problem in making our framework an effective
tool for practical use is the absence of any public ADE data
or generation tool. Nonetheless, we believe this limitation
may soon be overcome, thanks to the growing interest in the
CityGML standard by domain experts [11].

An important aspect in BX design is the level of automation
desired – ideally, one would expect to be able to choose an
Application Policy that meets certain needs, plug it in our
framework and use the combinations of these programs with
no extra effort, regardless of the application context. However,
our experience shows that some very complex CityGML
features containing highly varying objects, still need some
minimal custom bridging code to build the transformation.
Tackling this problem in a generic manner requires extending
the approach, something we identify as future work.

It is worth mentioning that [20] already solves the tower
crane problem of Section VI-A by developing a plugin for
Autodesk Revit –an established tool in building and urban
design. However, as pointed out by the authors, only a small
set of pre-de�ned simple rules are allowed, implemented ad-
hoc for this purpose. In addition, [19] shows that GIS-BIM
models (like CityGML) have enough information for treating
the problem in terms of geometrical and topological analysis.
Our approach, on the contrary, is general enough to allow
for complex rules and user-de�ned customization if a proper
Application Policy is set in place.

The two cases considered for our evaluation purposes
are model problems obtained from domain-speci�c literature,
highlighting the use of bidirectional transformations within our
framework for model-based engineering of space-dependent
systems. We believe that the strength of our approach is
twofold: �rstly, adaptability is exhibited, since integrating dis-
parate application-related sources of information still result in
the same analyzable model; secondly, providing an automatic
way to obtain an abstract model where veri�cation can be
performed, can lead to the development of more sophisticated
analysis-based work�ows.

VII. R ELATED WORK

We have presented a novel technical framework to engineer-
ing bidirectional model transformations of city models, offer-
ing assurances on correct and well-behaved transformations.
Consequently, we classify related work into three categories.
First, we discuss the state-of-the-art in model-based analysis
of physical spaces, positioning our work. Then, we review
transformation techniques and theoretical foundations on con-
sistency. Lastly, we discuss related engineering approaches


